Next24 - Бизнес Портал Перейти на мобильную версию

» » Искусственная кость легче воды и прочнее стали

    Искусственная кость легче воды и прочнее стали



     

    Ученые создали материал, похожий на кость, но более легкий, чем вода и более прочный, чем сталь. Технология наносборки позволила разработать материал, не имеющий аналогов в природе по своим характеристикам.


    Команда Йенса Бауэра из Технологического института Карлсруэ разработала необычный материал: менее плотный, чем вода, но по прочности сравнимый с некоторыми марками стали. До сих пор возможность изготовления таких материалов подвергалась сомнению, но ученые доказали, что современные технологию уже позволяют работать на наноуровне с достаточной точностью. Таким образом, открывается дорога для разработки и производства материалов с уникальными свойствами.


    Новый материал легче воды, но по прочности сравним со сталью. В ближайшем будущем подобные материалы сделают нашу жизнь безопаснее и легче, причем в прямом смысле этого слова

    Научно-технический прогресс неразрывно связан с разработкой и использованием новых материалов – это доказывает человеческая история со времен каменного века, до нынешней эпохи композитов.

    Человечество добилось большого прогресса в создании материалов, которые в природе не встречаются, однако до сих пор не удалось преодолеть ключевую дилемму: любой материал является компромиссом между прочностью и гибкостью. Проще говоря, чем прочнее материал, тем он более хрупкий, а чем гибче – тем меньше нагрузки может выдержать.


    Все известные материалы могут быть представлены в одном графике, где каждое деление означает увеличение прочности (ось y) и плотности (ось x) материала в 10 раз

    Линия в середине на 1000 кг/м3 является плотностью воды, соответственно все материалы слева легче воды, а те, что справа - тяжелее. Получается, что твердый материал не может быть легче воды, если он не является пористым. Пористые материалы, такие как дерево и кости, обладают сложной структурой и могут удачно сочетать прочность, гибкость и малый вес.

    На протяжении многих лет ученые искали гипотетические материалы, которые могли бы заполнить пустые участки на графике плотности. К счастью, современное компьютерное моделирование может подсказать, какая микроструктура материала может обеспечить требуемые характеристики. К тому же, у ученых впервые появились инструменты, с помощью которых можно работать над созданием микроструктур в масштабе толщины человеческого волоса.

    Йенс Бауэр и его коллеги попытались создать похожий на кость сверхпрочный материал с помощью новейшей немецкой технологии Nanoscribe, которая использует сочетание лазерной фотолитографии и 3D-печати.

    В лаборатории процесс изготовления нового материала происходит следующим образом: каплю фоточувствительного полимера помещают на предметное стекло и включают лазер. Система автоматизированного проектирования с высочайшей точностью наводит лазерный луч на конкретные участки, которые должны стать твердыми. После завершения обработки, неотвердевший полимер вымывают, оставляя твердый каркас со сложными внутренними структурами, спроектированными компьютером.

    Однако на этом процесс не заканчивается, так как получившаяся полимерная пористая «кость» недостаточно прочна. Для ее упрочнения на полимер наносится сверхтонкий слой оксида алюминия толщиной 50 нанометров (миллиардная часть метра).

     

     


    Получившийся материал легче воды, но при этом превосходит по прочности все природные и искусственные материалы, с плотностью меньше 1000 кг/м3. Так, он в состоянии выдерживать нагрузку 280 MПa, то есть сравним по прочности с некоторыми марками стали.

    К сожалению, в ближайшие несколько лет мы не получим массу полезных вещей, сделанных из новейших материалов, спроектированных на компьютере и собранных на наноуровне. Проблема в том, что современные лабораторные методы позволяют создавать предметы из таких материалов размером всего в несколько миллиметров.

    Тем не менее, быстрый прогресс в области 3D-печати, лазерной технике и создании новых полимеров позволяет надеяться, что через 10-15 лет на рынок выйдут новые уникальные материалы. Они найдут широкое применение повсеместно: от создания обуви и спортинвентаря, до самолетов и космической техники.




    Автор: All от 04 февраль | Источник новости




Наш Twitter

Мы VK

Интересное

Рекомендуем